On explicit Ramsey graphs and estimates of the number of sums and products

نویسنده

  • Pavel Pudlák
چکیده

In finite combinatorics there are many proofs of the existence of certain combinatorial structures which do not provide us with any explicit example of such structures. To give an explicit construction is not only a mathematical challenge, but often it is the only way to determine the extremal structures for a particular question. One of such problems is to give an explicit construction of a two-coloring of the complete bipartite graphKN,N such that no subgraphKr,r is monochromatic for some small r. It is well-known that there exist such colorings for r = (2 + o(1)) log2 N , but until recently explicit constructions were only known for r ≈ √ N . In 2004 Barak, Kindler, Shaltiel, Sudakov and Wigderson [1] found a polynomial construction of two-colorings of KN,N which leave no Kr,r monochromatic for r = N , where ε can be chosen arbitrarily small. Their result was a breakthrough not only in the field of Ramsey graphs, but they also succeeded in constructing extractors and other gadgets needed in derandomization with much better parameters. However, their construction is very complicated and uses derandomization. Thus it seems reasonable to look for more explicit constructions even if they have worse parameters. In this paper we give a very explicit construction of a three-coloring of KN,N in which no Kr,r is monochromatic for

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

On leap Zagreb indices of graphs

The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.

متن کامل

A study on some properties of leap graphs

In a graph G, the first and second degrees of a vertex v is equal to thenumber of their first and second neighbors and are denoted by d(v/G) andd 2 (v/G), respectively. The first, second and third leap Zagreb indices are thesum of squares of second degrees of vertices of G, the sum of products of second degrees of pairs of adjacent vertices in G and the sum of products of firs...

متن کامل

The Ramsey numbers of large trees versus wheels

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005